first_imgAutonomous vehicles might negotiate with each other for right of way. By Matthew HutsonSep. 11, 2017 , 11:50 AM How artificial intelligence could negotiate better deals for humans Q: What could fully autonomous negotiators do?A: In principle, there are tons of applications. Humans often fail to reach the best agreements where computers can. On top of that, computer negotiation can be done very fast. Autonomous negotiators could be used in haggling at a marketplace, buying a house, setting a meeting, or solving political gridlock when parties need to negotiate a very complex deal. Think of the Paris climate deal, or simply coalition agreements for the next government.Q: Why will such negotiation bots be necessary in the future? A: An application I mention in the paper is the smart grid and community energy trading. You could say to you neighbor, “I’m going on holiday. You can use my solar-powered energy for the next week. Maybe later I could get something back.” These small negotiations would happen sometimes even every 15 minutes. Another application is the Internet of Things, a scenario in which our everyday objects will all be interconnected through the internet. Maybe some users would like to pay a little bit more to get more privacy or increased functionality. We ran an experiment in which smartphone users were allowed to haggle over apps’ access to their location, contacts, and photos in exchange for money. The ability to negotiate led to decisions more in line with their privacy preferences.Q: What challenges do these bots face?A: Apart from eliciting a user’s preferences on the fly, an agent has to understand the domain. In a job negotiation, you have to feed it information on what you can ask. If you do a house negotiation, you would have to engage with someone who knows about real estate—house prices, maybe even the psychology involved. Another challenge is long-term perspective, doing multiple negotiations with the same or different opponents. Think of autonomous vehicles constantly having to engage in quick negotiations about who gets priority. What agents will then need is some kind of reputation metrics. Another real-life challenge is inappropriate bias. For example, in 2000, Amazon experimented with price discrimination, meaning that different customers buying the very same item paid a different price. If you have different prices for different genders, races, and incomes, you might have a problem.Q: How do we empower these bots while still trusting them?A: This is a difficult point. You run the risk of opaque behavior, where the agent is just running around doing its own thing. We think it’s very important to have transparency about likely outcomes. Take Uber. In the app, even before you call, you will see a range of prices. Actually, what goes on behind the screen is a little negotiation with all the drivers, where the advertised price range assures the user of the likely outcome.Q: Should we expect people to behave differently when represented by bots?A: Human lawyers are sometimes actually ethically permitted or even expected by their clients to misrepresent what has happened. And in autonomous driving, people want cars to have certain ethical behaviors, but when it concerns their own car they easily sacrifice these ideals. We need to study much more carefully what this will lead to in the future. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Sign up for our daily newsletter Get more great content like this delivered right to you! Countrycenter_img Email Click to view the privacy policy. Required fields are indicated by an asterisk (*) You may know the art of the deal, but there’s a science to it, too. And artificial intelligence is beginning to learn it. Computers that could negotiate for us could automate and optimize everything from traffic intersections to global treaties. Last month, at the International Joint Conference on Artificial Intelligence (IJCAI) in Melbourne, Australia, a group of researchers presented a paper on the challenges and opportunities of such hagglebots. Science spoke with the paper’s lead author, Tim Baarslag, a computer scientist at Centrum Wiskunde & Informatica in Amsterdam. This interview has been edited for brevity and clarity.Q: What can autonomous negotiators do today?A: There are simple bots on eBay, for example “sniping agents” that bid at the last possible second. And there’s software that bids for ad placement online. Then there are negotiation support systems, software that assists humans by suggesting win-win outcomes. In a job negotiation, the system might suggest: “From the proposals received so far, it can be deduced that the salary level is very important for your boss, while you have previously indicated you value family life most of all. Perhaps asking instead for a work day at home could be in your mutual interest.” And then there are agents in our IJCAI competition that, for example, play the board game Diplomacy with each other: “If you help me invade this country then later I can help you invade that country.” But they can’t strike deals without knowing the user’s preferences. We still lack autonomous negotiators in the full sense of the word. Photo_Concepts/iStockphoto last_img

Leave a Reply

Your email address will not be published. Required fields are marked *